
www.manaraa.com
350 IETE TECHNICAL REVIEW | VoL 26 | ISSUE 5 | SEP-oCT 2009

An Architecture for Interoperability of Embedded Systems
and Virtual Reality

Veit Köppen, Norbert Siegmund, Michael Soffner and Gunter Saake
Institute for Business and Technical Information Systems, Department of Computer Science, University of Magdeburg, Germany

Abstract

Virtual Reality enhances the development process of complex and inter-operating products due to bringing
existing systems together with virtual prototypes. The modeling of existing products within the virtual real-
ity environment and furthermore the properties of products and product combination are important factors
for success in a product life cycle. A reduction of effort for modeling of existing products and simulation of
properties can be achieved, when systems and their properties are transported to the virtual reality environ-
ment. In this paper, we present a service-oriented architecture for embedded systems and virtual reality. The
multiplicity of interfaces, protocols, and hardware and software aspects requires an architecture that over-
comes the related difficulties to increase efficiency. Service-oriented architectures make different scenarios
in the product life cycle possible, whereas the implementation effort for embedded systems is reduced due
to software reuse.

Keywords:
Embedded systems, Product life cycle, Service-oriented architecture, Virtual Reality.

1. Introduction

The development of Virtual Reality (VR) is a result
of the growing complexity of products, e.g., cars or
 medical devices. This complexity is imminent in the
complete product life cycle (PLC) of complex products,
where Virtual Engineering (VE) is only present in
the engineering phase. Virtual Engineering is often a
 promising possibility to experience the products within
their future environment. Cost reduction is another
reason for using this technique. Furthermore, technical
and business properties which are not obvious or
 hidden in reality can be visualized, e.g., security, safety,
 availability, product cost. Using existing products in
the VE enhances the development of new products or
improves the interaction of real and future products.
A reduction of programming, modeling and simulation
effort is often needed to make use of an operating virtual
environment.

In the domain of embedded systems (ESs), a variety
of protocols, operating systems, applications, and
 communication are used. For that reason, an architecture
has to be adaptive and able to serve this high complexity.
Software for ESs is often re-implemented due to varying
constraints although there are only a few differences
in the implemented functionality. Software product
lines (SPLs) [1] are a promising approach to decrease
the development effort due to reusing a common code
base in a family of similar programs. The usage of SPLs
in combination within the architecture can result into

costreduction,increasedefficiency,andenablesahigh
flexible development process, where results can be
 transferred to customers in an early stage.

Virtual Reality is the basis for combining existing
 products with real or virtual prototypes in an early
stage of development and interconnection. To visualize
the obvious and hidden properties of interconnecting
 systems, it is necessary to merge data from real systems
and digital development, such as Computer Aided
Design (CAD). Different data schema, formats and
 storage systems exist and have to be fused into a common
tailor-made data schema [2]. Real-time requirements,
data streams and transformation and aggregation rules
for product attributes have to be considered. Another
challenge is the complexity of data and restriction of
 storage and memory for the virtual environment. In
addition, data from the Internet of things can also be
represented in VR. Sensor networks collect a huge
amount of data that enhances business process control,
i.e. by a quick reaction on temperature changes. A holistic
approach for the complete PLC that combines and makes
all data available is in focus of this paper. This sums up
to several advantages shared over the whole PLC.

For these challenges, we propose an architecture that
brings embedded systems together with future (virtual)
products. A crucial requirement for this architecture
is high interoperability, to enable the cooperation of
implemented real and virtual products. Virtual Reality
represents the regarded environment on the one side as a

www.manaraa.com
351IETE TECHNICAL REVIEW | VoL 26 | ISSUE 5 | SEP-oCT 2009

Köppen V, et al.: An Architecture for ES and VR

filtertodifferentiatebetweenrelevantandnon-relevant
properties. On the other side, it brings non-visible
 properties into focus.

The paper is structured as follows. In the next section,
aVRenvironment isbrieflydescribed toput require-
ments on the architecture in foreground. This is followed
by a brief overview on Service-Oriented Architectures
(SOAs).Section3givesthreeapplicationscenariosfor
theuseofourconcept.InSection4,wepresenttheSOA
for ES within a VR environment.

2. Background

The abstract PLC, as depicted in Figure 1, consists of
different phases in which the scope of the product
changes. Planninganewproductisdoneinthefirststeps
completely virtual, cf. VE. Nevertheless, more and more
products are not developed from scratch but are results
from existing products. Combining these products with
newinspirationsmightonlybeefficientlyusedinvir-
tual environments. Hence, to reduce efforts and cost (cf.
salesandprofitcurvesinFigure1),itisnecessarytouse
and reuse previous models in the virtual environment.
This yields in a competitive advantage for a company.
In different domains, such as automotive and railway
vehicle manufacturing, VE is already intensively used
in the development phase. During production, a control
of the results of the development phase should be imple-
mented. For consistency and non-discontinuity of media,
the virtual models should also be used. Furthermore,
product automation is possible and previous developed
andrefinedmodelscanbeimplemented.Theoperation
of a product can include initiation, maintenance and
repair, as well as inspection. For each part measures of
the product are controlled. These measures might be

obvious or hidden and VR brings them into focus. In
the last phase of the PLC, the disposal of the product can
lead to a disassembling of the product and the disposal
or recycling. In many cases, this is also the start of a new
product and a new PLC.

2.1 Virtual Reality

Virtual Reality (VR) is the depiction and perception
of reality and the corresponding physical properties
in a real-time computer-simulated environment at
the same time. Virtual Reality can be divided into
seven categories: Simulation, interaction, artificiality,
 immersion, telepresence, full body immersion, and
networkedcommunications[3].InthePLC,allcategories
can occur. However, dependent upon the phase of the
cycle one category might dominate others. For example,
in the planning phase, simulations play an important
role, whereas from the customer perspective in the
production phase, immersion is important to increase
customer satisfaction in an early stage. Using VR enables
the possibility to bring measures and indicators of a
product together in the context of the environment of
the product. This improves production time as well as
itreduceserrorsandthereforeamoreefficientPLCis
possible. Virtual Reality is an essential part of VE, where
an increase of the above-described categories enhances
the engineering process by bringing together planners,
decision makers, users, etc.

2.2 Embedded Systems

Embedded Systems denote computer systems that
are integrated into a technical context, to control, to
 regularize or to monitor the technical system. Therefore
ESs are suited and optimized for a special task. Embedded
systemsareincreasinglyusedinmanydomains.In[4,5]
it is stated that about98%ofused computer systems
are ESs. In a modern car, more than 200 ESs can occur.
With an increasing number of cooperating systems, it is
extremely important to pay attention in the development
process. This can affect the co-working of existing as well
as future ESs. Within the development process of a new
product, many ESs, especially the software of the systems,
are reinvented, although a reuse might be useful. This is
respected to the fact that requirements are different and
properties, functional and non-functional, have changed.
 Visualization of properties reduces development cost,
duetoanimprovedidentificationofreusableparts.

A subset of properties of an ES in the development domain
canbeclassifiedasstatedinFigure2.Adifferentiationis
achieved by using classes and subclasses. Measures that
can be assigned to a class or subclass are not visualized.

We divide properties into the classes of meta data, virtual,
real, and compositional properties. Meta data give Figure 1: The product life cycle phases.

www.manaraa.com
352 IETE TECHNICAL REVIEW | VoL 26 | ISSUE 5 | SEP-oCT 2009

Köppen V, et al.: An Architecture for ES and VR

 information of the version of a product as well as semantic
information. Version or release information might be
 further categorized by details on producer or production
date. Additional differentiations might be possible. Each
category should contain at least one measure as a root node
in the hierarchy. This facilitates the control within the PLC.
In Figure 2, we only show some measures for the meta data
category due to limited space. Virtual properties represent
 information on products that are devoted to non-physical
 properties, whereas real properties represent information
on physical attributes. A different classification of
 virtual properties is possible, i.e. using quality instead of
 failure probability, safety, and security. However, in the
 product development phase, these properties have to be
considered carefully and we use them as own categories to
bring details into the focus. Further categories within the
virtual domain are maintainability, which condenses state-
ments for product development and future adaptiveness,
legal issues such as given by law or technical orders, and
business, where information on cost of a product, return
on investment, and other indicators are summarized.

A product or ES does not need necessarily to be described
by all measures or categories. In practice only the infor-
mation is provided, that is required in the actual phase
of the PLC. Note, that for some product combinations
transformation rules in the composition process might be
applicable, such as sum of weights. Other transformation
rules particularly for virtual properties are not available.
Therefore these properties have to be measured or esti-
mated for new product combinations.

2.3 Interoperability Aspects

Cooperative ESs have to be connected via a network
infrastructure. There exist a multiplicity of connection
possibilities due to hardware and protocols. Besides
protocols and hardware, challenges regarding networks
have to be met. These network challenges are:

• Availability of network— thenetworkmight be

 inaccessible.
• Responsetime—thelatencyinanetworkisnotnull.
• Transmissions—transmissionrateisnotinfinity.
• Security—thenetworkmightbeuntrustworthydue

to an attack.
• Networkstructure—thestructureofthenetworkis

changing.
• Administration—thenetworkcanbeadministrated

by different users with different scopes.
• Cost—costofnetworktraffichavetoberespected.
• Heterogeneity—networkobjects, e.g., clients, are

mostly heterogeneous.

To meet these challenges and to enable heterogeneous
devices to cooperate in such a network, it is not
 possible to implement the communication for each ele-
ment of the network in isolation. Another important issue
in this context is addressed by the dynamic structure,
where devices can connect or disconnect over time.
Therefore, we suggest a service-oriented approach to
overcome arising problems. In Section 2.5, SOA basics
aregivenandinSection4wepresentthecurrentstate
of the implementation.

2.4	 Product	Lines	and	Software	Product	Lines	

Product lines are increasingly used nowadays. Whereas in
the last century Henry Ford stated ‘Any customer can have
a car painted any color that he wants so long as it is black’,
thischangeddramaticallyinthelastdecades.In1985,40%
of the sales of the automobile company Audi were done
bythecarmodelAudi80with1.3Land55hp[6].In2000,
BMW supplied 1020 car alternatives for customers [6]. This
development is also important and applicable to software.

An SPL is developed to create a large number of related
products by reusing a set of software artifacts called
core assets or simply code units [7,8]. These code units,
once developed and tested, can be composed to derive
 different related variants of a program family. This
decreases development effort and time-to-market while
providing a high degree of reuse [9]. Different programs
of an SPL differ in features, e.g., one service variant might
have feature TCP/IP provided for communication and
another not. These differences are called variation points.
Features of an SPL and relationships between them are
described in a feature model with additional information
like attributes or annotations [10,11]. A feature model
defineswhetherafeatureisoptionalormandatoryand
is typically visualized with a feature diagram which
is a tree-like representation of all features of an SPL.
To derive a product, a stakeholder selects the features
from the feature diagram that fulfill her functional
requirements. These features point to an implementation
module. Depending on the implementation technique,
this module can be a component, an aspect or a feature

Figure 2: Hierarchy of properties for ES.

www.manaraa.com
353IETE TECHNICAL REVIEW | VoL 26 | ISSUE 5 | SEP-oCT 2009

Köppen V, et al.: An Architecture for ES and VR

module. This derivation process is completed with
theverificationofthecorrectnessoftheselectionandthe
generation of the product. The generation of a product
also depends on the used technique; aspects are weaved
within a base code, components and feature modules are
composed together.

2.5 Service-Oriented Architecture

Service-Oriented Architecture (SOA) is an approach
to support service orientation. A service is comparable
to a business activity. A service contains the following
properties,c.f.[12,13]:

• producesanoutcome,
• isself-contained,
• isablackboxtotheuser,and
• mightbecomposedofotherservices.

The above-stated properties of a service describe an
abstraction from real-world processes. Technically,
 services are autonomous, often only loosely coupled,
and reusable. Furthermore, a service is stateless.
A requirement is the formal service contract that
specifiesproperties, functionality, andmetadata for
the usage of the service. With these service contracts,
services are discoverable in a service environment.
The service representation utilizes business descrip-
tions to provide context and implements services using
service orchestration. Implementations of an SOA are
environment-specificandrequirestronggovernanceof
service representation and implementation.

3. Application Scenarios

In this section, some application areas are briefly
addressed. These areas are in focus of the ViERforES
project (http://vierfores.de) that deal with improve-
ments of the connection of VR and ES. The proposed
architecture increases the connection and inter-opera-
bility and reduces development effort of ESs and VR
environment. Software product lines facilitate the re-
usage of already implemented components furthermore.

3.1 Automotive

The development of cars is nowadays heavily supported
by VE. This is not only restricted to the use of CAD
but also to business or non-functional properties. The
 growing complexity of interacting embedded devices
within a car requires methods that monitor and
 control these complexity issues. Virtual Reality is one
 promising method to face the blindness (hidden or non-
visible properties). Existing elements have to be brought
together with planned or virtual elements to optimize the
development process. Those targets have to be checked in
an analysis, and hidden information must be measured

and displayed in an early stage. Our approach of an
inter-operating architecture enables a dynamic network
structure, where different systems can connect and
createaconnectiontoaVRenvironment.However,first
implementations for different ESs require a high initial
programming effort for each embedded device.

3.2 Medicine

In the domain of medical devices, VR is used to train
studentsaswellasqualifiedpersonnelinthecaseofnew
devices or methods. Trainings, where only simulations
are used, have often not the desired effect, due to different
interaction techniques and immersion problems. The
usage of medical devices in combination with sensors or
embedded systems is a promising approach to overcome
this. However, to improve the effects, it is not only the data
collection from the utilized systems but also reactions of
the systems from the VR scenario that are required. Besides
trainings, the evaluation of planned or performed opera-
tions are possible. In such a case, the combination of VR and
medical device improves comprehension in an easy way.
Each communicating system can be seen as an element of
a network. Our SOA approach promises a reduction of
development and maintenance of this network.

3.3 Logistic Hub

Theflowofproductsinalogistichubhascontinuously
increased. This is reasoned by global acting companies
and just-in-time production. To control, monitor or
check incoming, stocking, and outgoing materials, RFID
chips are only one possible solution. For example, sensor
 networks can monitor physical phenomena of goods and
their services. In many cases, further restrictions have to
be respected, such as security or safety issues. In a real-
time control center, all information has to be merged
andfilteredoraggregated.Real-timedatawarehousing
might be a concept for such a scenario. However, the data
integration and fusion have to be customized for each
new device transmitting data. Using VR in this context
is promising not only for bringing hidden information
in foreground but also for making simulations and
 forecasting possible.

4. An Architecture for Embedded Systems

In this section, we present an SOA for ESs within
the VR. To be faced by the addressed challenges in
 Section 2, the architecture has to take different aspects
into account. Communication issues might be respected
by using a lease strategy for elements. This increases
communication in the initial phase but increases
reliability and availability issues. Security might be
addressed by the use of encryption algorithms, e.g.,
AES. To enhance the use of the architecture, a dynamic
network infrastructure is essential. This means that at

www.manaraa.com
354 IETE TECHNICAL REVIEW | VoL 26 | ISSUE 5 | SEP-oCT 2009

runtime, server and clients can connect to the network.
 Furthermore, it is not crucial which technique is used
toimplementtheservice[13],e.g.,Javaprogramming
language. However, an abstract description of the service
is needed to enable the selection of supplied elements.

In Figure 3,wepresent the general communication
of services and clients within the implemented Jini
architecture [14]. Registration of a servicewith the
lookupserviceisdirectlydone,(a)and(b)inFigure3.
To reduce bandwidth communication, a class server is
used, where the service can deposit the required binaries
that are necessary for the use of the service, (c) and (d).
The client communication within the SOA is based on
a lookupofavailableservices, (I)and(II) inFigure3.
Afterwards the client connects to the class server and
downloads the corresponding binaries, (III) and (IV). In
the following phase, the communication between client
and service is established, where the client sends its

requests (V) and the service the corresponding answers
(VI).Note,thatthefirstfourstepsareonlyforinitial-
ization purposes whereas step (V) and (VI) build the
effective service execution which is often a continuous
process.

Within the domain of ESs and VR, it is essential that the
participants of the SOA are considered in more detail. On
the one hand different heterogeneous ESs have to be han-
dled, on the other hand a representation within the VR
environment is often required. Furthermore, to enhance
the PLC, consistency of the real ES and the corespondent in
the VR has to be guaranteed. We propose a SOA based on
Jini that combines hardware with an VR environment. In
Figure4weshowtheelementarypartsof thepartici-
pants. The communication is carried out by the SOA.
An ES has information on meta data, virtual, or real
properties. One service of the ES can be the data staging
for these information. The supply of sensor information
is another service from the ES. If data preprocessing is
possible, this can also be provided as a service. To cooper-
ate with the VR an ES acts also as a client. In such a case
results from the VR environment can directly be used.

A VR application server undertakes the task of visualizing,
simulating and coordinating virtual elements. To enable a
support of dynamically interacting systems, a service for
visualization is necessary, which is provided by the VR.
Another important aspect is to maintain the scenario. This
includes entries and exits of existing systems and virtual
products. In many cases, data have to be processed on the
application server due to restrictions of ESs. Furthermore,
simulations of features, which are not implemented yet,
have to be included in the service landscape. Virtual
products are not directly connected to the communication

Köppen V, et al.: An Architecture for ES and VR

Figure 3:CommunicationwithintheJini[14]basedSOA.

Figure 4: Participants within the VR-ES-SOA.

www.manaraa.com
355IETE TECHNICAL REVIEW | VoL 26 | ISSUE 5 | SEP-oCT 2009

layer. They are part of the VR application server. How-
ever, in the context of development or VE, these virtual
products provide services that are equal to services of
existing products. Therefore it is mandatory to implement
them with client and service features, which are initialized
within the SOA by the VR. Due to similarities of virtual
and real products, these implementations are very similar
and therefore a software development for the SOA is only
required once. In the case, that a virtual product comes to
life, already implemented services and client feature can
be reused. The SOA concept enables, as stated in Section
2.5, the use of small and standalone applications. One
approach foranSOA is Jini [14].This technologywas
developed in the 1990s by Sun (http://java.sun.com/
developer/products/jini) for the Java programming
 language. In the focus of this project is the ubiquitous
communication of small Java devices whereas the question
how this communication is established should not con-
cern. Instead of implementation aspects, easily provided
services are the core idea behind Jini. Another strength
ofJiniisrobustnessandflexibility.Thisincludesthepos-
sibility of dynamic networks, where devices are available
only for a short time window. Malfunctions and failures
can be recognized and a fast reaction within the network
ispossible.Thereforethisimplementationfitswellinto
the application domain of ESs and VR.

4.1 Requirements

With the Jini Extensible Remote Invocation (http://
artima.com/intv/jeri.html), the limitation of TCP/IP
is abolished. A supposed drawback is the use of Java,
due to the fact that ESs often only support C/C++. This
is regarded by restrictions of resources like memory or
CPU. Surrogates overcome this problem and make the
integration of non-Java devices in a Jini network possible.
These surrogates care for communication of the device
aswell aswithin the Jini network.Robustness, flex-
ibility, and performance have to be considered in the
 implementation of such a surrogate.

In Figure 5, we demonstrate our approach to integrate

the Jini SOA into the VR environment. The concept
enables Java devices to communicate within the net-
work to a client that represents the VR environment.
Furthermore, communication from the client to real sys-
tems is also possible. In the case, that non-Java devices,
that are the superior number of embedded devices, have
to be connetced to the SOA, a surrogate acts within the
network and communicates to the device.

4.2 Case Study

As a simple case study, we use the Display 3000 D071,
as a representation for an ES, in connection with the
Virtual Development and Training (http://vdtc.de)

platform [15]. In our artificial example,wedevelop
an application, where data are visualized on the ES.
Within the development process, we want to monitor
information on ROM and SRAM. The VR environment
controls the loading of pictures and visualizes the ES,
where prepared CAD information is used as well as
the current state is retrieved. If the ES is connected to
the network, the communication is enabled via the cor-
responding surrogate. The connection is established via
RS232 interface.Within theVR informationonROM
and SRAM of the ES are visualized. We use in our sce-
nario data streams between the virtual client and the
ES. The VR enables the visualization of data streams
between different systems. Additionally, changes in
the observed measures are visualized. In Figure 6, we
depict a snapshot of the running system. Note, that
thisisonlyanartificialapplication,duetobandwidth
limitations(RS232),theupdatesoftheESneedalong
time and advantages of the use of VR for this scenario
is rather frustrating than motivating.

5. Conclusions and Outlook

In this work, we proposed to use a service-oriented
architecture for the intercommunication of embedded
devices within the Virtual Reality. The use of services

Köppen V, et al.: An Architecture for ES and VR

Figure 5: Jini Network for communication of ESs and VR. Figure 6:Display300D071(realandvirtual).

www.manaraa.com
356 IETE TECHNICAL REVIEW | VoL 26 | ISSUE 5 | SEP-oCT 2009

AUTHORS
Veit Köppen received his MSc degree in Economics
from Humboldt-Universit ät zu Berlin, Germany in 2003.
During 2003-2008, he worked as a faculty member in
the Institute of Production, Information Systems and
operation Research, Freie Universit ät Berlin, Germany.
He received a Dr. rer. pol. (PhD) in 2008 from Freie

Universit ät Berlin, Germany. He is now a member of the Database Group
at the otto-von-Guericke University Magdeburg, Germany. Currently he is
the project coordinator in the project funded by the German Ministry of
Education and Research. His research interests include Business Intelligence,
data quality, interoperability aspects of embedded devices and process
management.

E-mail: vkoeppen@ovgu.de

Norbert Siegmund was born in Aschersleben,
Germany. He received his Master in Computer Science
(degree: Diplom-Informatiker) from otto-von-Guericke
University, Magdeburg, Germany in 2007. He joined
immediately the database workgroup at the otto-von-
Guericke University in Magdeburg as a PhD student.

His research interests are tailor-made data management and non-functional
properties in software product lines.

E-mail: nsiegmun@ovgu.de.

Michael Soffner was born in Staßfurt, Germany. He
received his Master in Computer Science (degree:
Diplom-Informatiker) from otto-von-Guericke University,
Magdeburg, Germany in 2005. Then he worked for two
years in the software development company Q-fin
GmbH, Magdeburg, Germany. In September 2008,

he joined the database workgroup at the otto-von-Guericke University
in Magdeburg as researcher in a project funded by the German Ministry
of Education and Research. Currently he is PhD student and his research
interests are real-time data management and information generation in
heterogeneous networks.

E-mail: michael.soffner@ovgu.de.

Gunter Saake received the diploma and a PhD in Computer
Science from the Technical University of Braunschweig,
F.R.G. in 1985 and 1988, respectively. From 1988 to 1989
he was a visiting scientist at the IBM Heidelberg Scientific
Center, where he joined the Advanced Information
Management project and worked on language features and

algorithms for sorting and duplicate elimination in nested relational database
structures. In January 1993, he received the Habilitation degree (venia legendi)
for Computer Science from the Technical University of Braunschweig. Since May
1994, Gunter Saake is a fulltime professor for the area ‘Databases and Information
Systems’ at the otto-von-Guericke University, Magdeburg. His research interests
inc-lude database integration, tailor-made data management, object-oriented
information systems and information fusion.

E-mail: saake@iti.cs.uni-magdeburg.de

DOI: 10.4103/0256-4602.55278; Paper No TR 209_09; Copyright © 2009 by the IETE

enables a complexity reduction for different devices.
Furthermore, we showed an implementation of the
SOA based on Jini. Research has to be taken for
dependencies of an increasing number of devices as
well as influence of network traffic. Challenges of
security and safety are not addressed in this work
but have to be investigated in the context of the SOA
approach, too.

6. Acknowledgments

Veit Köppen, Norbert Siegmund, and Michael Soffner are
funded by the German Ministry of Education and Science
(BMBF),project01IM08003C.Thepresentedworkispartof
the ViERforES (http://vierfores.de) project.

References

1. M. Rosenmüller, N. Siegmund, H. Schirmeier, J. Sincero, S. Apel,
T. Leich, et al. FAME-DBMS: Tailor-made Data Management
Solutions for Embedded Systems. In: EDBT’08 Workshop
on Software Engineering for Tailor-made Data Management
(SETMDM). (2008) 1-6.

2. N. Siegmund, C. Kästner, M. Rosenmüller, F. Heidenreich, S. Apel, and
G. Saake. Bridging the Gap Between Variability in Client Application
and Database Schema. In: 13. GI-Fachtagung Datenbanksysteme für
Business, Technologie und Web (BTW), GI (2009) 297-306.

3. M. Heim. The Metaphysics of Virtual Reality. Oxford University

Press (1993).
4. D. Tennenhouse. Proactive Computing. Communications of the

ACM (CACM) 43(5) (2000) 43-50.
5. J. Turley. The Essential guide to semiconductors. Prentice Hall

Press, Upper Saddle River, NJ, USA (2003).
6. M.S. Andres. Die optimale Varianz. Brand EINS 01/06 (2006) 65-9.
7. P. Clements, and L. Northrop. Software Product Lines: Practices

and Patterns. Addison-Wesley (2002).
8. C.W. Krueger. New methods in software product line practice.

Commun. ACM 49(12) (2006) 37-40.
9. W.A. Hetrick, C.W. Krueger, and J.G. Moore. Incremental return on

incremental investment: Engenio’s transition to software product line
practice. In: Proc. Conf. Object-Oriented Programming, Systems,
Languages and Applications, New York, NY, USA, ACM Press (2006).

10. K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson.
Feature- Oriented Do-main Analysis (FODA) Feasibility Study.
Technical Report CMU/SEI-90-TR-21, Software Engineering
Institute, Carnegie Mellon University (1990).

11. K. Czarnecki, and U. Eisenecker. Generative Programming:
Methods, Tools, and Applications. Addison-Wesley (2000).

12. M. Bell. Service-oriented modeling: service analysis, design, and
architecture. John Wiley and Sons, New Jersey (2008).

13. T. Erl. SOA Principles of Service Design. Prentice Hall (2007).
14. J. Waldo. The Jini architecture for network-centric computing.

Communications of the ACM 42(7) (1999) 76-82.
15. A. Hintze, M. Schumann, and S. Stüring. Interaktive szenarien

für die ausbildung von wartungs-und instandhaltungspersonal.
In Schulze, T., Lorenz, P., Hinz, V., eds.: SimVis, SCS Publishing
House e.V. (2000) 225-238.

Köppen V, et al.: An Architecture for ES and VR

www.manaraa.com

